8. ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square (ii) Diagonal BD bisects ∠B as well as ∠D.
(i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C) ⇒ AD = CD (Sides opposite to equal angles of a triangle are equal) also, CD = AB (Opposite sides of a rectangle) ,AB = BC = CD = AD Thus, ABCD is a square. (ii) In ΔBCD, BC = CD ⇒ ∠CDB = ∠CBD (Angles opposite to equal sides are equal) also, ∠CDB = ∠ABD (Alternate interior angles) ⇒ ∠CBD = ∠ABD Thus, BD bisects ∠B Now, ∠CBD = ∠ADB ⇒ ∠CDB = ∠ADB Thus, BD bisects ∠B as well as ∠D.