10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ
Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]
Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]