user image

Ananya Shree

Class 11th
Physics
2 years ago

For the one-dimensional motion, describe by x = t – sint a) x(t)>0 for all t>0 b) v(t)>0 for all t>0 c) a(t)>0 for all t>0 d) v(t) lies between 0 and 2

user image

Muskan Anand

2 years ago

The position of the particle is given as a function of time. x=t−sint  The velocity can be obtained by differentiating the given expression.  v=dtdx​=dtd​[t−sint]=1−cost The acceleration can be obtained by differentiating the expression of velocity w.r.t. time a=dtdv​ a=dtd​[1−cost]=sint As acceleration a>0 for all t>0 Hence, x(t)>0 for all t>0 velocity v=1−cost if, cost=1, the velocity will be v=0 vmax​=1−(cost)min​=1−(−1)=2 vmin​=1−(cost)max​=1−1=0 Hence, v lies between 0 and 2. For acceleration  a=dtdv​=−sint When t=0;x=0,v=0,a=0 When t=2π​;x= positive , v=0,a=−1 (negative) When t=π,x= positive, v= positive , a=0 When t=2π,x=0,v=0,a=0

Recent Doubts

Close [x]