user image

Ananya Shree

Class 11th
Physics
2 years ago

Consider a cycle tyre being filled with air by a pump. Let V be the volume of the tyre and at each stroke of the pump ∆V of air is transferred to the tube adiabatically. What is the work done when the pressure in the tube is increased from P1 to P2?

user image

Muskan Anand

2 years ago

Air is transferred into tyre adiabatically let initial volume of air in tyre V and after pumping one stroke it become (V+dV) and pressure increased from P to (P+dP) then P1​V1γ​=P2​V2γ​ P(d+dv)γ=(P+dP)Vγ PVγ[1+VdV​]γ=P[1+PdP​]Vγ As the volume of tire V remains constant PVγ[1+γVdV​]=PV[1+PdP​] [on expanding by binomial theorem neglecting the higher terms of △V as △V<<V] 1+γVdV​=1+PdP​ dV=γPV dP​ Integrating both side in limits W1​ to W2​ and P1​→P2​ ∫pdV=∫P1​P2​​γV dP​ ∫W1​W2​​dW=γV​(P2​−P1​)(V=constant) W=γ(P2​−P1​)V​.

Recent Doubts

Close [x]