user image

Ananya Shree

Class 12th
Physics
2 years ago

7.17 Can the instantaneous power output of an ac source ever be negative? Can the average power output be negative?

user image

Muskan Anand

2 years ago

Let the applied e.m.f. =E=E0​sin(ωt) I=I0​sin(ωt−ϕ) Instantaneous power output of ac source P=EI =E0​sinωtI0​sin(ωt−ϕ) =E0​I0​sinωt[sinωtcosϕ−cosωtsinϕ] =E0​I0​[sin2ωtcosϕ−sinωtcosωtsinϕ] =E0​I0​[2(1−cos2ωt)​cosϕ−21​sin2ωtsinϕ] =2E0​I0​​[cosϕ−cos2ωtcosϕ−sin2ωtsinϕ] =2E0​I0​​[cosϕ−(cos2ωtcosϕ+sin2ωtsinϕ] P=2E0​I0​​[cosϕ−cos(2ωt−ϕ)] Taken phase angle ϕ,±ve. Instantaneous Power P=2E0​I0​​[cosϕ±cos(2ωt−ϕ)] as cosϕ=ZR​,R and Z can never be negative and value of cosθ(θ=2ωt±ϕ) can vary from (1 to 0 to −1) in any case P can never be negative. We know that average power of LCR series ac circuit is PaV​=2E0​I0​​cosϕ Again as cosϕ=ZR​ is always positive, because R and Z, the reactances are always positive. So Pav​ can never be negative.

user image

Muskan Anand

2 years ago

Let the applied e.m.f. =E=E0​sin(ωt) I=I0​sin(ωt−ϕ) Instantaneous power output of ac source P=EI =E0​sinωtI0​sin(ωt−ϕ) =E0​I0​sinωt[sinωtcosϕ−cosωtsinϕ] =E0​I0​[sin2ωtcosϕ−sinωtcosωtsinϕ] =E0​I0​[2(1−cos2ωt)​cosϕ−21​sin2ωtsinϕ] =2E0​I0​​[cosϕ−cos2ωtcosϕ−sin2ωtsinϕ] =2E0​I0​​[cosϕ−(cos2ωtcosϕ+sin2ωtsinϕ] P=2E0​I0​​[cosϕ−cos(2ωt−ϕ)] Taken phase angle ϕ,±ve. Instantaneous Power P=2E0​I0​​[cosϕ±cos(2ωt−ϕ)] as cosϕ=ZR​,R and Z can never be negative and value of cosθ(θ=2ωt±ϕ) can vary from (1 to 0 to −1) in any case P can never be negative.

Recent Doubts

Close [x]