user image

Ananya Shree

Class 12th
Physics
2 years ago

The first four spectral lines in the Lyman series of an H-atom are λ = 1218 Å, 1028Å, 974.3 Å and 951.4Å. If instead of Hydrogen, we consider Deuterium, calculate the shift in the wavelength of these lines.

user image

Muskan Anand

2 years ago

In hydrogen atom, one electron (of mass meme) revolves around one proton (of mass M) Reduced mass for hydrogen, μH=me×Mme+M=me(1+meM)μH=me×Mme+M=me(1+meM) In deuterium, .1D2.1D2, one electron ( of mass meme) revolves around nucleus containing one proton and one neutron (of mass 2M). ∴∴ Reduced mass for deuterium, μD=me×2M2M+me=2M.me2M(1+me2M)=me(1−me2M)μD=me×2M2M+me=2M.me2M(1+me2M)=me(1-me2M) When an electron jumps form orbit j to orbit i, the frequency of radiation emitted hvji=(Ej−Ei)∝μhvji=(Ej-Ei)∝μ (reduced mass) ∴λji∝1μ∴λji∝1μ If λDλD is wavelength emitted in case of deuterium, and λHλH is wavelength emitted in case of hydrogen, then λDλH=μHμD=me(1−meM)me(1−me2M)=(1−meM)(1−me2M)−1=(1−meM)(1+me2M)λDλH=μHμD=me(1-meM)me(1-me2M)=(1-meM)(1-me2M)-1=(1-meM)(1+me2M) =(1−meM+me2M)=(1−me2M)=(1-meM+me2M)=(1-me2M) As meM=11840meM=11840, therefore λDλH=(1−12×1840)=0.99973λDλH=(1-12×1840)=0.99973 λD=(0.99973)λHλD=(0.99973)λH Using λH=1218Å,1028Å,974.3Åand951.4ÅλH=1218Å,1028Å,974.3Åand951.4Å, we get λD=1217.7Å,1027.7Å,974.04Å,951.1ÅλD=1217.7Å,1027.7Å,974.04Å,951.1Å.

Recent Doubts

Close [x]