user image

Ananya Shree

Class 12th
Physics
2 years ago

If a proton had a radius R and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H-atom when (i) R = 0.1Å, and (ii) R = 10 Å.

user image

Muskan Anand

2 years ago

(i) Consider in H atom nucleus as point charge electron is revolving around nucleus with speed v and radius rA​. The Coulombian force provides centripetal force to revolve around nucleus.  ∴rA​me​ν​=rA2​−Ke2​ ...(I) Here K=4πε0​1​ (−) sign shows the force of attraction. By Bohr's postulate, angular momentum =2πnh​ mνrA​=2πnh​ ν=2πmrA​nh​ 4π2m2rA2​rA​mn2h2​=rA2​Ke2​ [From I] rA​=4π2mKe2n2h2​..(II) For ground state n−1 rA​=4π2mKe2h2​ =(2×3.14)29.1×10−31×9×109×1.6×10−19×1.6×10−196.63×10−346.63×10−34​ 9.19×1.6×1.6×4×3.14×4×3.146.63×6.63×10−68+38+31−9​ =rA​=0.53Ao P.E.=rA​−Ke2​=0.53×10−10−9×109×1.6×10−19×1.6×10−19​J =0.53×10−10×1.6×10−19−9×1.6×1.6×10−19×10−19×109​J P.E.=0.5314.4​−27.17−27.2eV K.E=21​mν2 =21​4π2m2r2m⋅n2h2​=21​4π2mr2h2​ (n = 1 for ground state) =21​4×3.14×3.14×9×10−31×0.53×10−10×0.53×10−106.62×10−34×6.62×10−34​J =4×3.14×3.14×18×0.53×0.53×1.6×10−196.62×6.62×10−58+31+10+10​eV =4×3.14×3.14×18×0.53×0.536.62×6.62×10−58+51+19​ K.E=0.1373×102eV=13.7eV P.E.=27.2eV (ii) Now for spherical nucleus of radius, R , electron moves charge inside the nucleus R>>rb​ then electron moves inside the nucleus. Then  (rb​  is radius of new Bohr's orbit of revolving electron) Charge=44​πR3e⋅(34​πrb3​)​ e′=q2​=R3er33​​ q1​=e r3​mν2​=r32​Kee′​ (By Coulomb's law) mνr3​=2πnh​⇒2πmr3​nh​ (By Bohr's postulate) ∴rb​m​4π2m2r32​n2h2​=rb2​kee′​ rb​=4π2mkee′n2h2​ Now for ground state of H, m=1 and e′=R3erA3​​, then  ∴rb​=4π2mK⋅e⋅e⋅R3rb3​​h2​=[4π2mKe2h2​]×rb3​R3​=rA​×rb3​R3​ [∵rA​=4π2mKe3h2​=0.53Aocalclatedinpart(i)] rb​=rA​[rb​R​]3 rb4​=rA​R3=0.53Ao×(10Ao)3 rbA​=0.53×1000(Ao)4(∵rA​=0.53Ao)  rb​=[530]41​Ao<RAo K.E.=21​mν2=2m​⋅4π2m2rb2​h2​=8π2mrb2​h2​[∵ν=4π2m2rb2​n2h2​] =8×3.14×3.14×9.1×10−31×4.8×4.8×10−20×1.6×10−196.62×6.62×10−34×10−34​eV =8×3.14×3.14×9.1×4.8×4.8×1.66.62×6.62×10−68+31+20+19​eV =26460.243.8244​10−58+70−0.001656×102eV K.E=0.167eV P.E.=4πε0​e2​R3(rb2​−3R2)​[P.E=rKq1​q2​​] P.E.=[4πεo​rA​e2​]R3rA​(rb2​−3R2)​[multiplyingbyrA​rA​​] From part (i) P.E.=4πεo​rA​e2​=27.2eV ∴P.E=27.2[10000.53(530​−300)​]⎣⎢⎡​∵rb​=(530)41​AoandR=10Ao⎦⎥⎤​ =1000A327.2eV×0.53(23.02−300)A3​=27.2×10000.53(−276.9)​eV P.E.=10003992.9​=−3.99eV K.E.=0.167eV

Recent Doubts

Close [x]