user image

Deepika Deepika

Job Interview Skills
English
2 years ago

How beneficial is dropout regularisation in deep learning models? Does it speed up or slow down the training process, and why?

user image

Abhishek Mishra

2 years ago

The dropout regularisation method mostly proves beneficial for cases where the dataset is small, and a deep neural network is likely to overfit during training. The computational factor has to be considered for large datasets, which may outweigh the benefit of dropout regularisation. The dropout regularisation method involves the random removal of a layer from a deep neural network, which speeds up the training process.

Recent Doubts

Close [x]