Explain with examples: Macronutrients, micronutrients, beneficial nutrients, toxic elements, and essential elements.
Based upon the criteria only a few elements have been found to be absolutely essential for plant growth and metabolism. These elements are further divided into two broad categories based on their quantitative requirements, Macronutrients Micronutrients Macronutrients must generally be present in plant tissues in the concentration of 1 to 10 mg/L of dry matter. The macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorous, sulfur, potassium, calcium, and magnesium. Of these, carbon, hydrogen, and oxygen are mainly obtained from CO2, and H20, while the others are absorbed from the soil as mineral nutrition Micronutrients or trace elements are needed in very small amounts (equal to or less than 0.1 mg/L of dry matter). These include iron, manganese, copper, molybdenum, zinc, boron, chlorine, and nickel. In addition to the 17 essential elements named above, there are some beneficial elements such as sodium, silicon, cobalt, and selenium. They are required by higher plants. Essential elements can also be grouped into four broad categories on the basis of their diverse functions. These categories are: (1) Essentia] elements as components of biomolecules and hence structural elements of cells, (eg: carbon, hydrogen, oxygen, and nitrogen). (2) Essential elements that are components of energy-related chemical compounds in plants, for example, magnesium in chlorophyll and phosphorous in ATP. Essential elements that activate or inhibit enzymes, for example, Mg2+ is an activator for both ribulose bisphosphate carboxylase-oxygenase and phosphoenolpyruvate carboxylase, both of which are critical enzymes in photosynthetic carbon fixation; Zn2+ is an activator of alcohol dehydrogenase and Mo of nitrogenase during nitrogen metabolism. (4) Some essential elements can alter the osmotic potential of a cell. Potassium plays an important role in the opening and closing of stomata. Any mineral ion concentration in tissues that reduces the dry weight of tissues by about 10 percent is considered toxic. Such critical concentrations vary widely among different micronutrients. The toxicity symptom! are difficult to identify. Toxicity levels for any element also vary for different plants. Many times excess of an element may inhibit the uptake of another element. For example, the prominent symptoms of manganese toxicity are the appearance of brown spots surrounded by chlorotic veins.