Whatsup

Quantitative Aptitude Quiz for SSC(Numbers): 19-03-2021

Updated Fri, 19 Mar 2021 09:02 PM IST
Source: safalta
(1) Which one of the following is not a prime number?

a)31
b) 61
c) 71
d) 91
 
91 is divisible by 7. So, it is not a prime number.
 
(2) (112 x 54) =?

a) 65000
b) 70000
c) 72000
d) 75000
 
112 x 25 x 25 = 70000

(3) It is being given that (232 + 1) is completely divisible by a whole number. Which of the following numbers is completely divisible by this number?

Free Demo Classes

Register here for Free Demo Classes


 

a) (2^16 + 1)

b) (2^64 + 1)

c) (2^54 + 1)

d) (2^96 + 1)
 
 
Let 2^32 = x. Then, (2^32 + 1) = (x + 1).
Let (x + 1) be completely divisible by the natural number N. Then,
(2^96 + 1) = [(2^32)^3 + 1] = (x^3 + 1) = (x + 1)(x^2 - x + 1), which is completely divisible by N, since (x + 1) is divisible by N.

 
(4) What least number must be added to 1056, so that the sum is completely divisible by 23?
 
a) 1
b) 2
c) 6
d) 3
 
When 1056 is divided by 23, Remainder is 21. So, 2 must be added to get completely divided by 23.
 

(5) 1397 x 1397 = ?
 
a) 1941609.
b) 1951709.
c) 1961609.
d) 1951609.
 
 
1397 x 1397 = (1397)^2
  = (1400 - 3)^2
  = (1400)^2 + (3)^2 - (2 x 1400 x 3)
  = 1960000 + 9 - 8400
  = 1960009 - 8400
 
 
 
= 1951609.
 
 
(6) What is the unit digit in {(6374)^1793 x (625)^317 x (341^491)}?

a) 0
b) 5
c) 2
d) 1

Unit digit in (6374)^1793 = Unit digit in (4)^1793
    = Unit digit in [(42)^896 x 4]
    = Unit digit in (6 x 4) = 4
Unit digit in (625)^317 = Unit digit in (5)^317 = 5
Unit digit in (341)^491 = Unit digit in (1)^491 = 1
Required digit = Unit digit in (4 x 5 x 1) = 0.

 

(7) The sum of first five prime numbers is:
 
a) 28
b) 18
c) 22
d) 39

Required sum = (2 + 3 + 5 + 7 + 11) = 28.
Note: 1 is not a prime number.

 
(8) The difference of two numbers is 1365. On dividing the larger number by the smaller, we get 6 as quotient and the 15 as remainder. What is the smaller number?
 
a) 260
b) 280
c) 270
d) 290

Let the smaller number be x. Then larger number = (x + 1365).
 x + 1365 = 6x + 15
 5x = 1350
 x = 270
Smaller number = 270.

 
(9) If the number 517*324 is completely divisible by 3, then the smallest whole number in the place of * will be:
a) 0
b) 1
c) 2
d) 3
 
Sum of digits = (5 + 1 + 7 + x + 3 + 2 + 4) = (22 + x), which must be divisible by 3.
x = 2

 
(10 )Which one of the following numbers is exactly divisible by 11?
 
a) 235641
b) 245642
c) 315624
d) 415624
 
(4 + 5 + 2) - (1 + 6 + 3) = 1, not divisible by 11.
(2 + 6 + 4) - (4 + 5 + 2) = 1, not divisible by 11.
(4 + 6 + 1) - (2 + 5 + 3) = 1, not divisible by 11.
(4 + 6 + 1) - (2 + 5 + 4) = 0, So, 415624 is divisible by 11.

 
 
 
 
 



 
 
 
 
 

Disclaimer

अपनी वेबसाइट पर हम डाटा संग्रह टूल्स, जैसे की कुकीज के माध्यम से आपकी जानकारी एकत्र करते हैं ताकि आपको बेहतर अनुभव प्रदान कर सकें, वेबसाइट के ट्रैफिक का विश्लेषण कर सकें, कॉन्टेंट व्यक्तिगत तरीके से पेश कर सकें और हमारे पार्टनर्स, जैसे की Google, और सोशल मीडिया साइट्स, जैसे की Facebook, के साथ लक्षित विज्ञापन पेश करने के लिए उपयोग कर सकें। साथ ही, अगर आप साइन-अप करते हैं, तो हम आपका ईमेल पता, फोन नंबर और अन्य विवरण पूरी तरह सुरक्षित तरीके से स्टोर करते हैं। आप कुकीज नीति पृष्ठ से अपनी कुकीज हटा सकते है और रजिस्टर्ड यूजर अपने प्रोफाइल पेज से अपना व्यक्तिगत डाटा हटा या एक्सपोर्ट कर सकते हैं। हमारी Cookies Policy, Privacy Policy और Terms & Conditions के बारे में पढ़ें और अपनी सहमति देने के लिए Agree पर क्लिक करें।

Agree