Data Science vs. Data Analytics: डेटा साइंस बनाम डेटा एनालिटिक्स, डेटा साइंस व डेटा एनालिटिक्स में से आपको किसे चुनना चाहिए

Safalta Experts Published by: Nikesh Kumar Updated Thu, 06 Jan 2022 03:32 PM IST

Data Science vs. Data Analytics इस साल के लोकप्रिय शब्द हैं। लंबे समय तक करियर की संभावना तलाशने वाले लोगों के लिए, बिग डेटा और डेटा साइंस की नौकरियां लंबे समय से एक सुरक्षित शर्त रही हैं। यह प्रवृत्ति जारी रहने की संभावना है क्योंकि एआई और मशीन लर्निंग हमारे दैनिक जीवन और अर्थव्यवस्था में अत्यधिक एकीकृत हो गए हैं। आज, डेटा व्यवसायों के लिए महत्वपूर्ण अंतर्दृष्टि इकट्ठा करने और बाजार में बढ़ने के लिए व्यावसायिक प्रदर्शन में सुधार करने के लिए नया तेल है। लेकिन अंतर्दृष्टि कौन बटोरेगा? सभी एकत्रित कच्चे डेटा को कौन संसाधित करेगा? सब कुछ या तो डेटा विश्लेषक या डेटा वैज्ञानिक द्वारा किया जाता है। इस क्षेत्र में ये दो सबसे लोकप्रिय नौकरी भूमिकाएं हैं क्योंकि दुनिया भर की कंपनियां डेटा का अधिकतम लाभ उठाने की कोशिश करती हैं। डेटा साइंस और डेटा एनालिटिक्स शब्दों का एक मिश्म है जो एक दूसरे के साथ परस्पर जुड़ते और ओवरलैप होते हैं लेकिन फिर भी काफी भिन्न होते हैं।
 

डेटा साइंस बनाम डेटा एनालिटिक्स: एक ही सिक्के के दो पहलू-

डेटा साइंस और डेटा एनालिटिक्स बिग डेटा से निपटते हैं, प्रत्येक एक अद्वितीय दृष्टिकोण अपनाते हैं। डेटा साइंस एक छत्र है जिसमें डेटा एनालिटिक्स शामिल है। डेटा साइंस कई विषयों का एक संयोजन है - गणित, सांख्यिकी, कंप्यूटर विज्ञान, सूचना विज्ञान, मशीन लर्निंग और आर्टिफिशियल इंटेलिजेंस। इसमें जटिल डेटासेट से पैटर्न निकालने और उन्हें कार्रवाई योग्य व्यावसायिक रणनीतियों में बदलने के लिए डेटा माइनिंग, डेटा इंट्रेंस, प्रेडिक्टिव मॉडलिंग और एमएल एल्गोरिथम विकास जैसी अवधारणाएं शामिल हैं। दूसरी ओर, डेटा एनालिटिक्स मुख्य रूप से सांख्यिकी, गणित और सांख्यिकीय विश्लेषण से संबंधित है।

आईटी हार्डवेयर और नेटवर्किंग में करियर कैसे बनाएं, जानें हार्डवेयर और नेटवर्किंग से जुड़े कोर्स के बारें में
 
जबकि डेटा साइंस बड़े डेटासेट के बीच सार्थक सहसंबंध खोजने पर ध्यान केंद्रित करता है, डेटा एनालिटिक्स को निकाले गए अंतर्दृष्टि की बारीकियों को उजागर करने के लिए डिज़ाइन किया गया है। दूसरे शब्दों में, डेटा एनालिटिक्स डेटा साइंस की एक शाखा है जो डेटा साइंस द्वारा सामने आने वाले प्रश्नों के अधिक विशिष्ट उत्तरों पर केंद्रित है। डेटा साइंस नए और अनूठे प्रश्नों की खोज करना चाहता है जो व्यावसायिक नवाचार को चला सकते हैं। इसके विपरीत, डेटा विश्लेषण का उद्देश्य इन सवालों के समाधान खोजना और यह निर्धारित करना है कि डेटा-संचालित नवाचार को बढ़ावा देने के लिए उन्हें एक संगठन के भीतर कैसे लागू किया जा सकता है।
 

डेटा साइंस बनाम डेटा एनालिटिक्स: डेटा साइंटिस्ट और डेटा एनालिस्ट की नौकरी की भूमिकाएँ- 

Free E Books